Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__incr(nil) → nil
a__incr(cons(X, L)) → cons(s(mark(X)), incr(L))
a__adx(nil) → nil
a__adx(cons(X, L)) → a__incr(cons(mark(X), adx(L)))
a__natsa__adx(a__zeros)
a__zeroscons(0, zeros)
a__head(cons(X, L)) → mark(X)
a__tail(cons(X, L)) → mark(L)
mark(incr(X)) → a__incr(mark(X))
mark(adx(X)) → a__adx(mark(X))
mark(nats) → a__nats
mark(zeros) → a__zeros
mark(head(X)) → a__head(mark(X))
mark(tail(X)) → a__tail(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__incr(X) → incr(X)
a__adx(X) → adx(X)
a__natsnats
a__zeroszeros
a__head(X) → head(X)
a__tail(X) → tail(X)

Q is empty.


QTRS
  ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

a__incr(nil) → nil
a__incr(cons(X, L)) → cons(s(mark(X)), incr(L))
a__adx(nil) → nil
a__adx(cons(X, L)) → a__incr(cons(mark(X), adx(L)))
a__natsa__adx(a__zeros)
a__zeroscons(0, zeros)
a__head(cons(X, L)) → mark(X)
a__tail(cons(X, L)) → mark(L)
mark(incr(X)) → a__incr(mark(X))
mark(adx(X)) → a__adx(mark(X))
mark(nats) → a__nats
mark(zeros) → a__zeros
mark(head(X)) → a__head(mark(X))
mark(tail(X)) → a__tail(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__incr(X) → incr(X)
a__adx(X) → adx(X)
a__natsnats
a__zeroszeros
a__head(X) → head(X)
a__tail(X) → tail(X)

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

a__incr(nil) → nil
a__incr(cons(X, L)) → cons(s(mark(X)), incr(L))
a__adx(nil) → nil
a__adx(cons(X, L)) → a__incr(cons(mark(X), adx(L)))
a__natsa__adx(a__zeros)
a__zeroscons(0, zeros)
a__head(cons(X, L)) → mark(X)
a__tail(cons(X, L)) → mark(L)
mark(incr(X)) → a__incr(mark(X))
mark(adx(X)) → a__adx(mark(X))
mark(nats) → a__nats
mark(zeros) → a__zeros
mark(head(X)) → a__head(mark(X))
mark(tail(X)) → a__tail(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__incr(X) → incr(X)
a__adx(X) → adx(X)
a__natsnats
a__zeroszeros
a__head(X) → head(X)
a__tail(X) → tail(X)

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

a__natsa__adx(a__zeros)
a__tail(cons(X, L)) → mark(L)
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(a__adx(x1)) = 2·x1   
POL(a__head(x1)) = x1   
POL(a__incr(x1)) = x1   
POL(a__nats) = 1   
POL(a__tail(x1)) = 1 + x1   
POL(a__zeros) = 0   
POL(adx(x1)) = 2·x1   
POL(cons(x1, x2)) = x1 + 2·x2   
POL(head(x1)) = x1   
POL(incr(x1)) = x1   
POL(mark(x1)) = x1   
POL(nats) = 1   
POL(nil) = 0   
POL(s(x1)) = x1   
POL(tail(x1)) = 1 + x1   
POL(zeros) = 0   




↳ QTRS
  ↳ RRRPoloQTRSProof
QTRS
      ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

a__incr(nil) → nil
a__incr(cons(X, L)) → cons(s(mark(X)), incr(L))
a__adx(nil) → nil
a__adx(cons(X, L)) → a__incr(cons(mark(X), adx(L)))
a__zeroscons(0, zeros)
a__head(cons(X, L)) → mark(X)
mark(incr(X)) → a__incr(mark(X))
mark(adx(X)) → a__adx(mark(X))
mark(nats) → a__nats
mark(zeros) → a__zeros
mark(head(X)) → a__head(mark(X))
mark(tail(X)) → a__tail(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__incr(X) → incr(X)
a__adx(X) → adx(X)
a__natsnats
a__zeroszeros
a__head(X) → head(X)
a__tail(X) → tail(X)

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

a__incr(nil) → nil
a__incr(cons(X, L)) → cons(s(mark(X)), incr(L))
a__adx(nil) → nil
a__adx(cons(X, L)) → a__incr(cons(mark(X), adx(L)))
a__zeroscons(0, zeros)
a__head(cons(X, L)) → mark(X)
mark(incr(X)) → a__incr(mark(X))
mark(adx(X)) → a__adx(mark(X))
mark(nats) → a__nats
mark(zeros) → a__zeros
mark(head(X)) → a__head(mark(X))
mark(tail(X)) → a__tail(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__incr(X) → incr(X)
a__adx(X) → adx(X)
a__natsnats
a__zeroszeros
a__head(X) → head(X)
a__tail(X) → tail(X)

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

a__adx(nil) → nil
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(a__adx(x1)) = 2·x1   
POL(a__head(x1)) = x1   
POL(a__incr(x1)) = x1   
POL(a__nats) = 0   
POL(a__tail(x1)) = x1   
POL(a__zeros) = 0   
POL(adx(x1)) = 2·x1   
POL(cons(x1, x2)) = x1 + 2·x2   
POL(head(x1)) = x1   
POL(incr(x1)) = x1   
POL(mark(x1)) = x1   
POL(nats) = 0   
POL(nil) = 1   
POL(s(x1)) = x1   
POL(tail(x1)) = x1   
POL(zeros) = 0   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
QTRS
          ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

a__incr(nil) → nil
a__incr(cons(X, L)) → cons(s(mark(X)), incr(L))
a__adx(cons(X, L)) → a__incr(cons(mark(X), adx(L)))
a__zeroscons(0, zeros)
a__head(cons(X, L)) → mark(X)
mark(incr(X)) → a__incr(mark(X))
mark(adx(X)) → a__adx(mark(X))
mark(nats) → a__nats
mark(zeros) → a__zeros
mark(head(X)) → a__head(mark(X))
mark(tail(X)) → a__tail(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__incr(X) → incr(X)
a__adx(X) → adx(X)
a__natsnats
a__zeroszeros
a__head(X) → head(X)
a__tail(X) → tail(X)

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

a__incr(nil) → nil
a__incr(cons(X, L)) → cons(s(mark(X)), incr(L))
a__adx(cons(X, L)) → a__incr(cons(mark(X), adx(L)))
a__zeroscons(0, zeros)
a__head(cons(X, L)) → mark(X)
mark(incr(X)) → a__incr(mark(X))
mark(adx(X)) → a__adx(mark(X))
mark(nats) → a__nats
mark(zeros) → a__zeros
mark(head(X)) → a__head(mark(X))
mark(tail(X)) → a__tail(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__incr(X) → incr(X)
a__adx(X) → adx(X)
a__natsnats
a__zeroszeros
a__head(X) → head(X)
a__tail(X) → tail(X)

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

a__head(cons(X, L)) → mark(X)
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(a__adx(x1)) = x1   
POL(a__head(x1)) = 1 + x1   
POL(a__incr(x1)) = x1   
POL(a__nats) = 0   
POL(a__tail(x1)) = 2·x1   
POL(a__zeros) = 0   
POL(adx(x1)) = x1   
POL(cons(x1, x2)) = x1 + 2·x2   
POL(head(x1)) = 1 + x1   
POL(incr(x1)) = x1   
POL(mark(x1)) = x1   
POL(nats) = 0   
POL(nil) = 0   
POL(s(x1)) = x1   
POL(tail(x1)) = 2·x1   
POL(zeros) = 0   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
QTRS
              ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

a__incr(nil) → nil
a__incr(cons(X, L)) → cons(s(mark(X)), incr(L))
a__adx(cons(X, L)) → a__incr(cons(mark(X), adx(L)))
a__zeroscons(0, zeros)
mark(incr(X)) → a__incr(mark(X))
mark(adx(X)) → a__adx(mark(X))
mark(nats) → a__nats
mark(zeros) → a__zeros
mark(head(X)) → a__head(mark(X))
mark(tail(X)) → a__tail(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__incr(X) → incr(X)
a__adx(X) → adx(X)
a__natsnats
a__zeroszeros
a__head(X) → head(X)
a__tail(X) → tail(X)

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

MARK(incr(X)) → A__INCR(mark(X))
MARK(tail(X)) → A__TAIL(mark(X))
MARK(zeros) → A__ZEROS
MARK(s(X)) → MARK(X)
MARK(head(X)) → MARK(X)
MARK(tail(X)) → MARK(X)
MARK(incr(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
A__ADX(cons(X, L)) → MARK(X)
MARK(adx(X)) → A__ADX(mark(X))
MARK(adx(X)) → MARK(X)
MARK(head(X)) → A__HEAD(mark(X))
A__ADX(cons(X, L)) → A__INCR(cons(mark(X), adx(L)))
MARK(nats) → A__NATS
A__INCR(cons(X, L)) → MARK(X)

The TRS R consists of the following rules:

a__incr(nil) → nil
a__incr(cons(X, L)) → cons(s(mark(X)), incr(L))
a__adx(cons(X, L)) → a__incr(cons(mark(X), adx(L)))
a__zeroscons(0, zeros)
mark(incr(X)) → a__incr(mark(X))
mark(adx(X)) → a__adx(mark(X))
mark(nats) → a__nats
mark(zeros) → a__zeros
mark(head(X)) → a__head(mark(X))
mark(tail(X)) → a__tail(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__incr(X) → incr(X)
a__adx(X) → adx(X)
a__natsnats
a__zeroszeros
a__head(X) → head(X)
a__tail(X) → tail(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
QDP
                  ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

MARK(incr(X)) → A__INCR(mark(X))
MARK(tail(X)) → A__TAIL(mark(X))
MARK(zeros) → A__ZEROS
MARK(s(X)) → MARK(X)
MARK(head(X)) → MARK(X)
MARK(tail(X)) → MARK(X)
MARK(incr(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
A__ADX(cons(X, L)) → MARK(X)
MARK(adx(X)) → A__ADX(mark(X))
MARK(adx(X)) → MARK(X)
MARK(head(X)) → A__HEAD(mark(X))
A__ADX(cons(X, L)) → A__INCR(cons(mark(X), adx(L)))
MARK(nats) → A__NATS
A__INCR(cons(X, L)) → MARK(X)

The TRS R consists of the following rules:

a__incr(nil) → nil
a__incr(cons(X, L)) → cons(s(mark(X)), incr(L))
a__adx(cons(X, L)) → a__incr(cons(mark(X), adx(L)))
a__zeroscons(0, zeros)
mark(incr(X)) → a__incr(mark(X))
mark(adx(X)) → a__adx(mark(X))
mark(nats) → a__nats
mark(zeros) → a__zeros
mark(head(X)) → a__head(mark(X))
mark(tail(X)) → a__tail(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__incr(X) → incr(X)
a__adx(X) → adx(X)
a__natsnats
a__zeroszeros
a__head(X) → head(X)
a__tail(X) → tail(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 4 less nodes.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
QDP
                      ↳ RuleRemovalProof

Q DP problem:
The TRS P consists of the following rules:

MARK(adx(X)) → A__ADX(mark(X))
MARK(incr(X)) → A__INCR(mark(X))
MARK(adx(X)) → MARK(X)
MARK(s(X)) → MARK(X)
MARK(tail(X)) → MARK(X)
MARK(head(X)) → MARK(X)
MARK(incr(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
A__ADX(cons(X, L)) → A__INCR(cons(mark(X), adx(L)))
A__ADX(cons(X, L)) → MARK(X)
A__INCR(cons(X, L)) → MARK(X)

The TRS R consists of the following rules:

a__incr(nil) → nil
a__incr(cons(X, L)) → cons(s(mark(X)), incr(L))
a__adx(cons(X, L)) → a__incr(cons(mark(X), adx(L)))
a__zeroscons(0, zeros)
mark(incr(X)) → a__incr(mark(X))
mark(adx(X)) → a__adx(mark(X))
mark(nats) → a__nats
mark(zeros) → a__zeros
mark(head(X)) → a__head(mark(X))
mark(tail(X)) → a__tail(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__incr(X) → incr(X)
a__adx(X) → adx(X)
a__natsnats
a__zeroszeros
a__head(X) → head(X)
a__tail(X) → tail(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

MARK(adx(X)) → MARK(X)
MARK(tail(X)) → MARK(X)
MARK(head(X)) → MARK(X)
A__ADX(cons(X, L)) → MARK(X)


Used ordering: POLO with Polynomial interpretation [25]:

POL(0) = 0   
POL(A__ADX(x1)) = 2 + 2·x1   
POL(A__INCR(x1)) = 2·x1   
POL(MARK(x1)) = 2·x1   
POL(a__adx(x1)) = 1 + x1   
POL(a__head(x1)) = 1 + 2·x1   
POL(a__incr(x1)) = x1   
POL(a__nats) = 0   
POL(a__tail(x1)) = 1 + 2·x1   
POL(a__zeros) = 0   
POL(adx(x1)) = 1 + x1   
POL(cons(x1, x2)) = 2·x1 + x2   
POL(head(x1)) = 1 + 2·x1   
POL(incr(x1)) = x1   
POL(mark(x1)) = x1   
POL(nats) = 0   
POL(nil) = 0   
POL(s(x1)) = x1   
POL(tail(x1)) = 1 + 2·x1   
POL(zeros) = 0   



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ QDP
                      ↳ RuleRemovalProof
QDP
                          ↳ RuleRemovalProof

Q DP problem:
The TRS P consists of the following rules:

MARK(incr(X)) → A__INCR(mark(X))
MARK(adx(X)) → A__ADX(mark(X))
MARK(s(X)) → MARK(X)
MARK(incr(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
A__ADX(cons(X, L)) → A__INCR(cons(mark(X), adx(L)))
A__INCR(cons(X, L)) → MARK(X)

The TRS R consists of the following rules:

a__incr(nil) → nil
a__incr(cons(X, L)) → cons(s(mark(X)), incr(L))
a__adx(cons(X, L)) → a__incr(cons(mark(X), adx(L)))
a__zeroscons(0, zeros)
mark(incr(X)) → a__incr(mark(X))
mark(adx(X)) → a__adx(mark(X))
mark(nats) → a__nats
mark(zeros) → a__zeros
mark(head(X)) → a__head(mark(X))
mark(tail(X)) → a__tail(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__incr(X) → incr(X)
a__adx(X) → adx(X)
a__natsnats
a__zeroszeros
a__head(X) → head(X)
a__tail(X) → tail(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

A__ADX(cons(X, L)) → A__INCR(cons(mark(X), adx(L)))


Used ordering: POLO with Polynomial interpretation [25]:

POL(0) = 0   
POL(A__ADX(x1)) = 2 + 2·x1   
POL(A__INCR(x1)) = x1   
POL(MARK(x1)) = 2·x1   
POL(a__adx(x1)) = 1 + x1   
POL(a__head(x1)) = x1   
POL(a__incr(x1)) = x1   
POL(a__nats) = 0   
POL(a__tail(x1)) = x1   
POL(a__zeros) = 0   
POL(adx(x1)) = 1 + x1   
POL(cons(x1, x2)) = 2·x1 + x2   
POL(head(x1)) = x1   
POL(incr(x1)) = x1   
POL(mark(x1)) = x1   
POL(nats) = 0   
POL(nil) = 0   
POL(s(x1)) = x1   
POL(tail(x1)) = x1   
POL(zeros) = 0   



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ QDP
                      ↳ RuleRemovalProof
                        ↳ QDP
                          ↳ RuleRemovalProof
QDP
                              ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

MARK(adx(X)) → A__ADX(mark(X))
MARK(incr(X)) → A__INCR(mark(X))
MARK(s(X)) → MARK(X)
MARK(incr(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
A__INCR(cons(X, L)) → MARK(X)

The TRS R consists of the following rules:

a__incr(nil) → nil
a__incr(cons(X, L)) → cons(s(mark(X)), incr(L))
a__adx(cons(X, L)) → a__incr(cons(mark(X), adx(L)))
a__zeroscons(0, zeros)
mark(incr(X)) → a__incr(mark(X))
mark(adx(X)) → a__adx(mark(X))
mark(nats) → a__nats
mark(zeros) → a__zeros
mark(head(X)) → a__head(mark(X))
mark(tail(X)) → a__tail(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__incr(X) → incr(X)
a__adx(X) → adx(X)
a__natsnats
a__zeroszeros
a__head(X) → head(X)
a__tail(X) → tail(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ QDP
                      ↳ RuleRemovalProof
                        ↳ QDP
                          ↳ RuleRemovalProof
                            ↳ QDP
                              ↳ DependencyGraphProof
QDP
                                  ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(incr(X)) → A__INCR(mark(X))
MARK(s(X)) → MARK(X)
MARK(incr(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
A__INCR(cons(X, L)) → MARK(X)

The TRS R consists of the following rules:

a__incr(nil) → nil
a__incr(cons(X, L)) → cons(s(mark(X)), incr(L))
a__adx(cons(X, L)) → a__incr(cons(mark(X), adx(L)))
a__zeroscons(0, zeros)
mark(incr(X)) → a__incr(mark(X))
mark(adx(X)) → a__adx(mark(X))
mark(nats) → a__nats
mark(zeros) → a__zeros
mark(head(X)) → a__head(mark(X))
mark(tail(X)) → a__tail(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__incr(X) → incr(X)
a__adx(X) → adx(X)
a__natsnats
a__zeroszeros
a__head(X) → head(X)
a__tail(X) → tail(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(incr(X)) → A__INCR(mark(X))
MARK(incr(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.

MARK(s(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
A__INCR(cons(X, L)) → MARK(X)
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(A__INCR(x1)) = x1   
POL(MARK(x1)) = x1   
POL(a__adx(x1)) = 1 + x1   
POL(a__head(x1)) = 0   
POL(a__incr(x1)) = 1 + x1   
POL(a__nats) = 0   
POL(a__tail(x1)) = 0   
POL(a__zeros) = 0   
POL(adx(x1)) = 1 + x1   
POL(cons(x1, x2)) = x1   
POL(head(x1)) = 0   
POL(incr(x1)) = 1 + x1   
POL(mark(x1)) = x1   
POL(nats) = 0   
POL(nil) = 0   
POL(s(x1)) = x1   
POL(tail(x1)) = 0   
POL(zeros) = 0   

The following usable rules [17] were oriented:

mark(0) → 0
mark(s(X)) → s(mark(X))
a__adx(X) → adx(X)
a__incr(X) → incr(X)
a__zeroszeros
a__natsnats
a__tail(X) → tail(X)
a__head(X) → head(X)
mark(adx(X)) → a__adx(mark(X))
mark(incr(X)) → a__incr(mark(X))
mark(zeros) → a__zeros
mark(nats) → a__nats
mark(tail(X)) → a__tail(mark(X))
mark(head(X)) → a__head(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__zeroscons(0, zeros)
a__adx(cons(X, L)) → a__incr(cons(mark(X), adx(L)))
a__incr(cons(X, L)) → cons(s(mark(X)), incr(L))
a__incr(nil) → nil



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ QDP
                      ↳ RuleRemovalProof
                        ↳ QDP
                          ↳ RuleRemovalProof
                            ↳ QDP
                              ↳ DependencyGraphProof
                                ↳ QDP
                                  ↳ QDPOrderProof
QDP
                                      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

MARK(s(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
A__INCR(cons(X, L)) → MARK(X)

The TRS R consists of the following rules:

a__incr(nil) → nil
a__incr(cons(X, L)) → cons(s(mark(X)), incr(L))
a__adx(cons(X, L)) → a__incr(cons(mark(X), adx(L)))
a__zeroscons(0, zeros)
mark(incr(X)) → a__incr(mark(X))
mark(adx(X)) → a__adx(mark(X))
mark(nats) → a__nats
mark(zeros) → a__zeros
mark(head(X)) → a__head(mark(X))
mark(tail(X)) → a__tail(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__incr(X) → incr(X)
a__adx(X) → adx(X)
a__natsnats
a__zeroszeros
a__head(X) → head(X)
a__tail(X) → tail(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ QDP
                      ↳ RuleRemovalProof
                        ↳ QDP
                          ↳ RuleRemovalProof
                            ↳ QDP
                              ↳ DependencyGraphProof
                                ↳ QDP
                                  ↳ QDPOrderProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
QDP
                                          ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

MARK(s(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)

The TRS R consists of the following rules:

a__incr(nil) → nil
a__incr(cons(X, L)) → cons(s(mark(X)), incr(L))
a__adx(cons(X, L)) → a__incr(cons(mark(X), adx(L)))
a__zeroscons(0, zeros)
mark(incr(X)) → a__incr(mark(X))
mark(adx(X)) → a__adx(mark(X))
mark(nats) → a__nats
mark(zeros) → a__zeros
mark(head(X)) → a__head(mark(X))
mark(tail(X)) → a__tail(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__incr(X) → incr(X)
a__adx(X) → adx(X)
a__natsnats
a__zeroszeros
a__head(X) → head(X)
a__tail(X) → tail(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ QDP
                      ↳ RuleRemovalProof
                        ↳ QDP
                          ↳ RuleRemovalProof
                            ↳ QDP
                              ↳ DependencyGraphProof
                                ↳ QDP
                                  ↳ QDPOrderProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ QDP
                                          ↳ UsableRulesProof
QDP
                                              ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

MARK(s(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: